Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathbf{k x}$ Ex)

Tickets Sold (x)	8	5	7	9	2
Money Earned (y)	104	65	91	117	26

Every ticket sold $\underline{13}$ dollars are earned.
1)

Lawns Mowed (x)	7	10	4	5	8
Dollars Earned (y)	280	400	160	200	320

For every lawn mowed _ dollars were earned.
2)

Boxes of Candy (x)	4	2	10	7	8
Pieces of Candy (y)	64	32	160	112	128

For every box of candy you get \qquad pieces.
3)

Cans of Paint (x)	2	4	6	3	7
Bird Houses Painted (y)	10	20	30	15	35

For every can of paint you could paint _ bird houses.
4)

Phone Sold (x)	7	10	2	3	8
Money Earned (y)	189	270	54	81	216

Every phone sold earns \qquad dollars.
5)

Pounds of Beef Jerky (x)	8	5	7	2	4
Price in dollars (y)	120	75	105	30	60

For every pound of beef jerky it cost _ dollars.
6)

Glasses of Lemonade (x)	5	3	2	8	4
Lemons Used (y)	20	12	8	32	16

For every glass of lemonade there were _ lemons used.
7)

Chocolate Bars (x)	9	10	7	2	6
Calories (y)	2,457	2,730	1,911	546	1,638

Every chocolate bar has __ calories.

8) | Votes for Debby (x) | 2 | 4 | 5 | 7 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Votes for Ned (y) | 70 | 140 | 175 | 245 | 350 |

For Every vote for Debby there were __ votes for Ned.

Answers

Ex. $\quad \mathrm{y}=13 \mathrm{x}$

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad

Identifying Constant of Proportionality (Tables)
Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathbf{k x}$

Answers

Ex)

Tickets Sold (x)	8	5	7	9	2
Money Earned (y)	104	65	91	117	26

Every ticket sold $\underline{13}$ dollars are earned.
1)

Lawns Mowed (x)	7	10	4	5	8
Dollars Earned (y)	280	400	160	200	320

For every lawn mowed 40 dollars were earned.
2)

Boxes of Candy (x)	4	2	10	7	8
Pieces of Candy (y)	64	32	160	112	128

For every box of candy you get 16 pieces.
3)

Cans of Paint (x)	2	4	6	3	7
Bird Houses Painted (y)	10	20	30	15	35

For every can of paint you could paint $\underline{5}$ bird houses.
4)

Phone Sold (x)	7	10	2	3	8
Money Earned (y)	189	270	54	81	216

Every phone sold earns $\underline{27}$ dollars.
5)

Pounds of Beef Jerky (x)	8	5	7	2	4
Price in dollars (y)	120	75	105	30	60

For every pound of beef jerky it cost $\underline{15}$ dollars.
6)

Glasses of Lemonade (x)	5	3	2	8	4
Lemons Used (y)	20	12	8	32	16

For every glass of lemonade there were $\underline{4}$ lemons used.
7)

Chocolate Bars (x)	9	10	7	2	6
Calories (y)	2,457	2,730	1,911	546	1,638

Every chocolate bar has $\underline{273}$ calories.

8) | Votes for Debby (x) | 2 | 4 | 5 | 7 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Votes for Ned (y) | 70 | 140 | 175 | 245 | 350 |

For Every vote for Debby there were 35 votes for Ned.

Ex. $\quad \mathbf{y}=13 \mathbf{x}$

1. $\mathbf{y}=\mathbf{4 0 x}$
2. $\quad \mathbf{y}=16 x$
3. $\mathbf{y}=\mathbf{5 x}$
4. $\quad \mathbf{y}=27 x$
5. $y=15 x$
6. $\quad \mathbf{y}=\mathbf{4} \mathbf{x}$
7. $\mathbf{y}=\mathbf{2 7 3 x}$
8. $\quad \mathbf{y}=\mathbf{3 5 x}$
